

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>

BREVET DE TECHNICIEN SUPÉRIEUR

CONSTRUCTIONS METALLIQUES

SESSION 2019

E5: DESSIN DE CONCEPTION

U51 Conception

Durée: 4h - Coefficient: 3

Le dossier technique d'étude est commun aux épreuves E4 et E5.

Contenu du dossier

Questionnaire : page 2 à 4Annexes : pages 8 et 9

o Documents réponses : DR1, DR2 et DR3 à rendre obligatoirement

Barème indicatif

Partie I : 4,5 points
Partie II : 9 points
Partie III : 6,5 points

Les 3 parties sont indépendantes.

Recommandations

Une attention particulière sera portée :

- o au repérage des questions ;
- o à la qualité de rédaction et aux soins des schémas.

Il est recommandé de traiter chaque partie sur une nouvelle copie.

Matériels et documents autorisés

- o Catalogues de profilés.
- o Règlements ou extraits des règlements en vigueur.
- L'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé.

CODE ÉPREUVE : CME5CO	EX BREVET DE TEC	AMEN : HNICIEN SUP	ÉRIEUR	SPÉCIALITÉ : Constructions Métalliques				
SESSION 2019	SUJET	É	PREUVE :	U51 Conception		Calculatrice autorisée		
Durée : 4h	Coefficien	t : 3				Page 1/9		

I- ETUDE DE LA STABILITE DE L'OUVRAGE

I-1 : Stabilités :

En vous référant au dossier technique, **compléter** les différents schémas représentés sur DR1, par des liaisons et des barres (traits forts) permettant la stabilité de chacune des files.

Rem: toutes les liaisons au sol sont des articulations

Modélisation:

• Stabilité transversale du bureau et de l'atelier (files 2 et 4) schéma

• Stabilité longitudinale de la file A (bureau et atelier) schéma 2

◆ Stabilité longitudinale de la file C (atelier et bureau) schéma 3

◆ Stabilité de toiture de la partie bureau et atelier schéma4

I-2: Cheminement des efforts dans la structure:

En repartant de votre schéma 4 (stabilité de toiture), **compléter** les deux schémas 5 et 6 sur DR2, en représentant ou en surlignant en traits forts, uniquement les barres qui participent à la reprise des efforts dus au vent pour les deux cas suivants :

◆ Vent sur pignon : V_L schéma 5

◆ Vent sur long pan : V_T schéma 6

II- ETUDE DE L'ATTACHE DE LA PALEE DE STABILITE DE LA FILE C

La stabilité de la file C est obtenue à partir d'une double croix de Saint-André. Les diagonales de cette palée sont des simples cornières de 50x50x5. Elles sont reliées à des goussets par l'intermédiaire de 2 boulons HM12 6-8. Ces goussets sont eux-mêmes solidarisés aux poteaux avec des cordons de soudure.

Voir Annexe 1

Données:

- Acier S275
- ◆ Gousset : épaisseur 5 mm
- Boulons :HM 12 6-8
- Assemblage de catégorie A

Travail demandé:

II-1 : **Déterminer** l'effort N_{Ed} dans la cornière la plus sollicitée : (schéma statique annexe 1)

II-2 : Vérifier la résistance des boulons :

· Cisaillement.

Rem: pour cette question comme pour les suivantes, on prendra: $N_{Ed} = 25kN$.

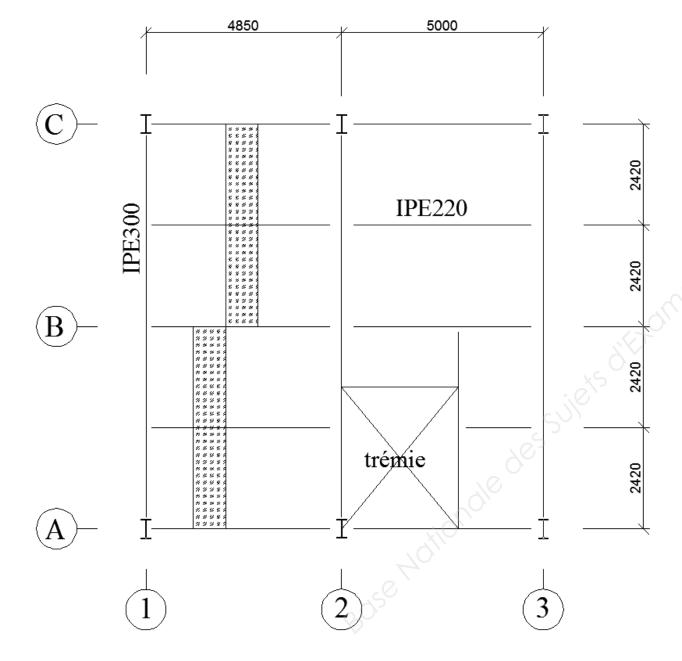
II-3 : Vérifier la résistance de l'assemblage :

• Pression diamétrale.

Rem : la pression diamétrale maximale est sur la cornière.

II-4 : Vérifier la résistance de la cornière :

- Traction.
- Cisaillement de bloc.


II-5 : **Vérifier** la résistance des soudures par le calcul à l'aide de la méthode directionnelle de préférence (bonus + 1 point).

Rem 1 : vous considérez la longueur efficace des cordons.

Rem 2 : vous pouvez également utiliser la méthode simplifiée.

III- ETUDE DU PLANCHER DU BUREAU

Il s'agit d'un plancher collaborant constitué d'une dalle béton coulée sur des bacs en acier galvanisé. Ces bacs sont fixés sur une structure en acier de type poutres / solives. Ils sont montés perpendiculairement aux solives et sont continus sur 2 travées. A noter que ce plancher a été optimisé par rapport à la structure initiale. On a augmenté l'espace entre 2 solives pour passer de 5 à 4 travées (voir schéma ci-dessous).

Données:

Chargement:

Charges permanentes : G
 Profilés (structure)
 Bac acier + dalle béton

 Exploitation : I = 2,5 kN/m²

Profilés:

Poutres : IPE300 S275Solives : IPE 220 S275

Plancher collaborant : Annexe 3

Bac acier : IJ60-160-800
Epaisseur : 0,75 mm
Portée : 2,42 m
Montage sans étai

Travail demandé :

III-1: Calepinage du plancher: Annexe 3

Déterminer le nombre de bacs nécessaires afin de couvrir complètement ce plancher, sans tenir compte de la trémie.

III-2: Plancher collaborant: Annexe 3

- 2-1 **Déterminer** l'épaisseur de la dalle béton, puis la charge permanente surfacique du plancher (dalle + bac acier) : G (kN/m²)
- 2-2 **Rechercher** une optimisation du solivage du plancher en passant de 4 à 3 travées :
 - 2-2-1 **Recalculer** l'écartement des solives.
 - 2-2-2 **Vérifier** et **justifier** s'il est toujours possible de réaliser le plancher sans étai au coulage et en gardant la même épaisseur de béton.

III-3: Assemblage poutres / solives:

L'attache d'une solive (IPE220) sur une poutre principale (IPE300) est réalisée conformément au dessin présenté en *Annexe 2*.

3-1 **Déterminer** l'effort tranchant appliqué à l'assemblage en fonction du chargement pelu appliqué à une solive courante :

Hyp: on prendra p_{ELU} égale à 17,2 KN/m

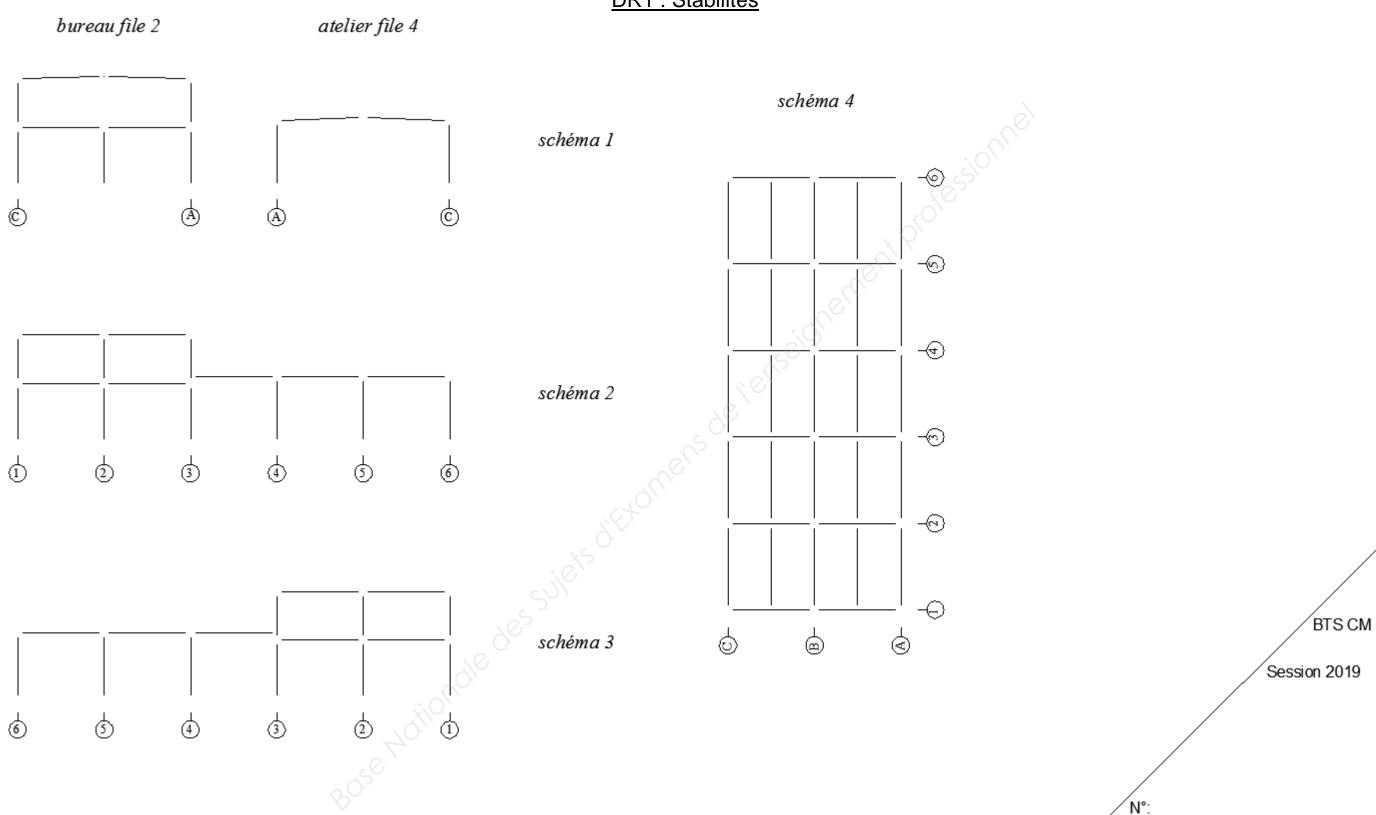
<u>Rem :</u> cet effort correspond aux réactions aux appuis d'une solive courante (sans coefficient de continuité), pour un calcul aux ELU

3-2 **Déterminer** l'effort dans les boulons les plus sollicités, en tenant compte de l'excentrement de 115 mm :

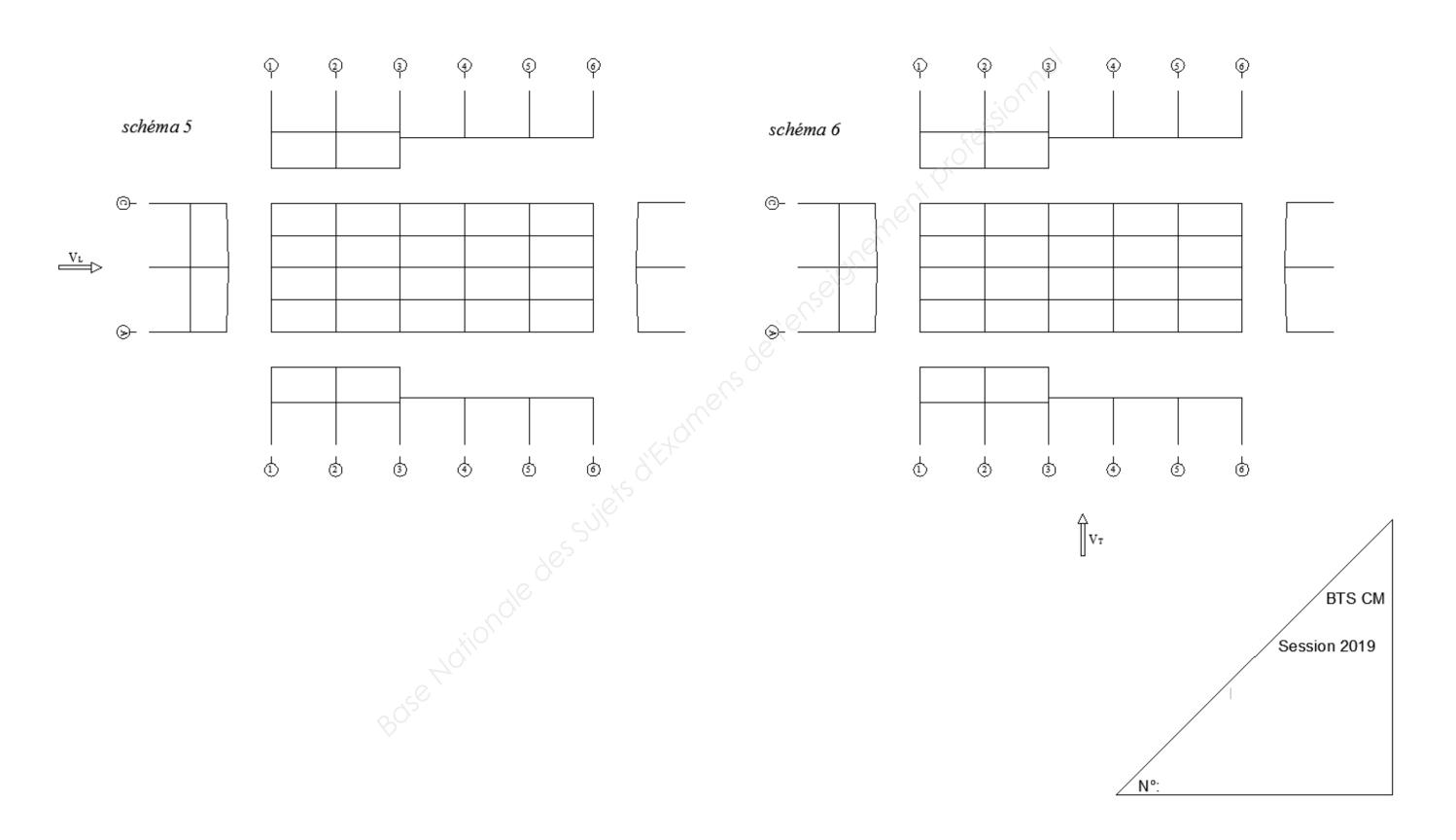
Hyp: cet assemblage doit transmettre un effort tranchant V_{Ed} qu'on prendra égal à 43 kN

3-3 Conception d'un assemblage équivalent :

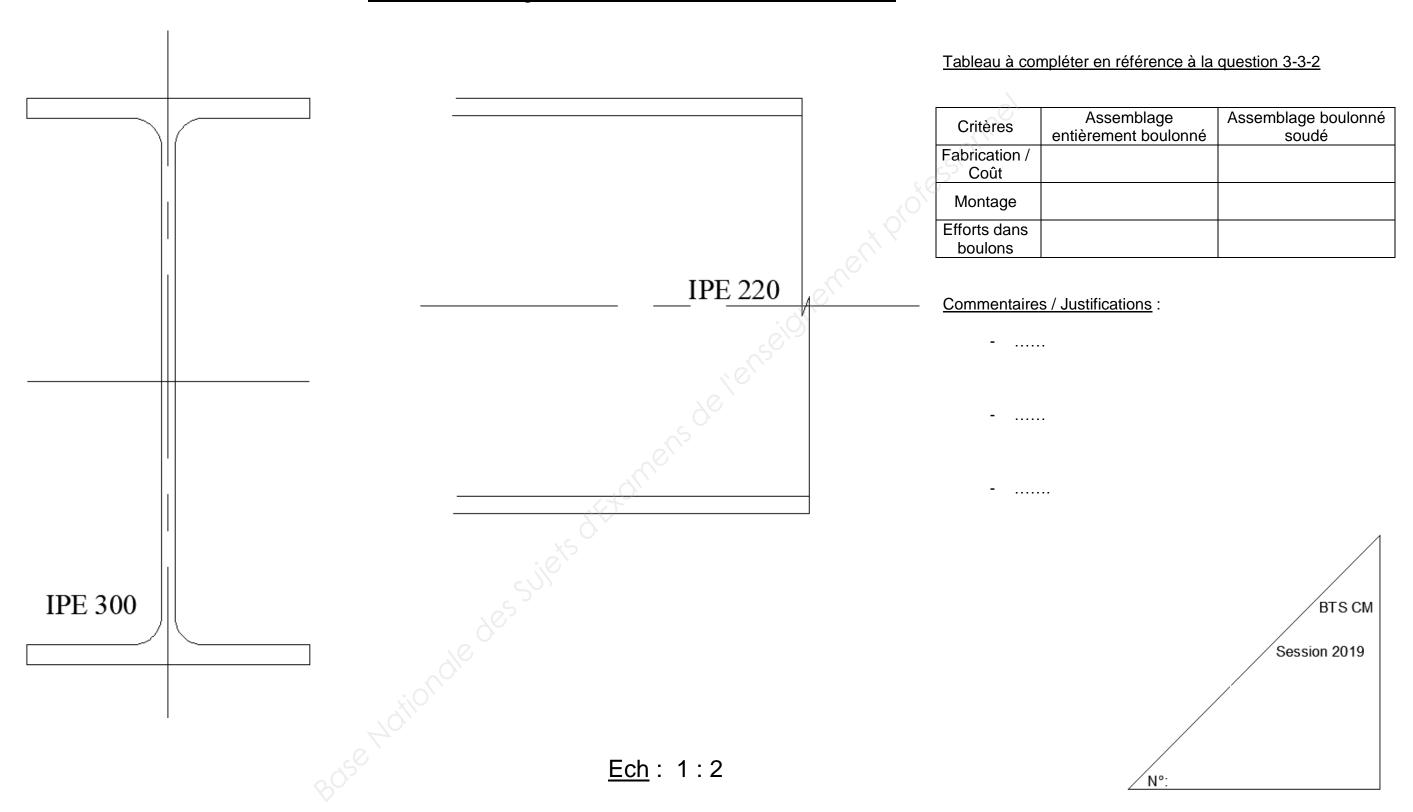
On souhaite concevoir un assemblage équivalent, entièrement boulonné. Pour cela, vous allez utiliser une double cornières de 60x60x6, d'une longueur de 120 mm et des boulons HM12-6.8.

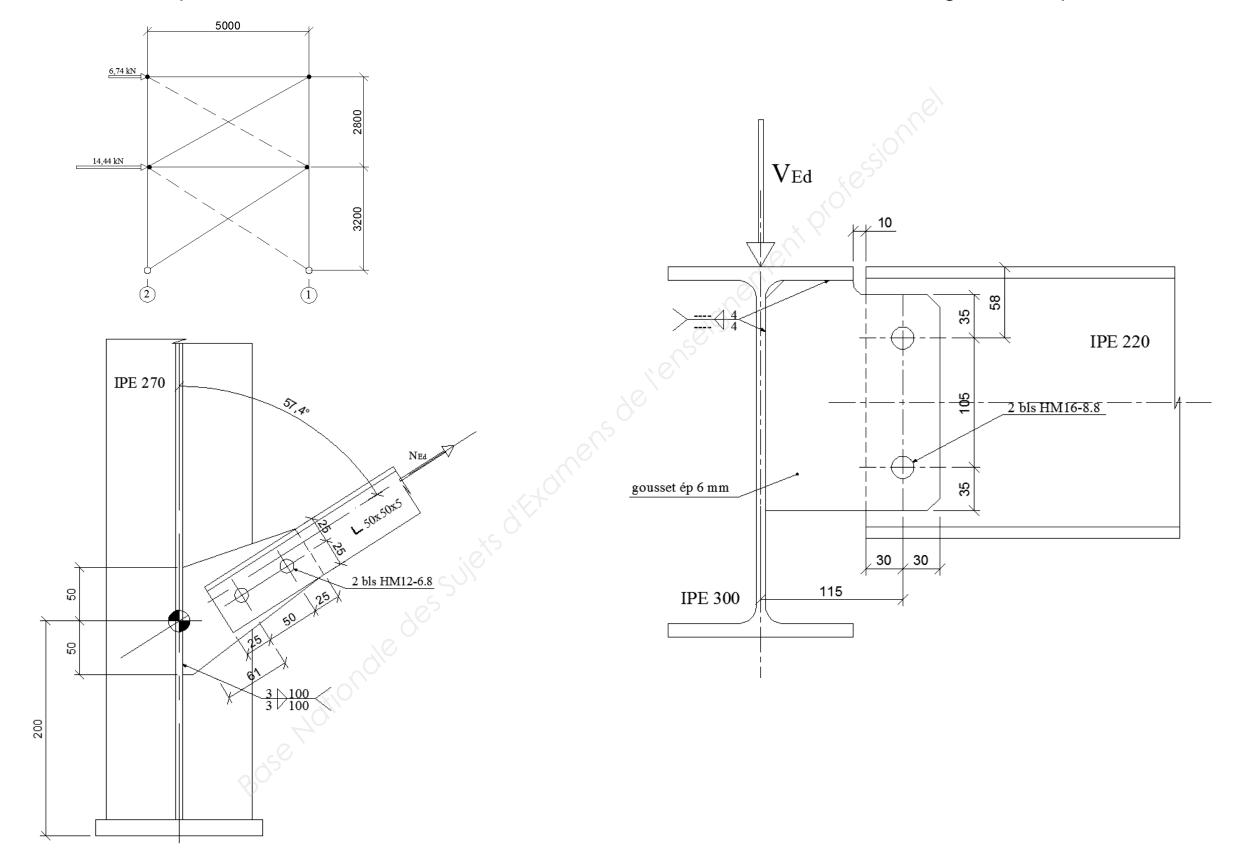

3-3-1 Concevoir cet assemblage sur le DR3

Rem : ne pas oublier de mettre en place la cotation.


3-3-2 **Compléter** le tableau du DR3 en mettant des croix dans les cases qui correspondent à l'assemblage le plus approprié aux différents critères énoncés. **Justifier** vos réponses sous le tableau.

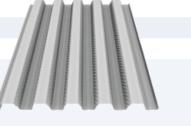
EXAMEN: BTS Constructions Métalliques – Épreuve: U51 Conception – page 4/9

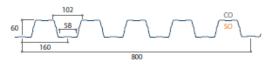

DR1 : Stabilités


DR2: Cheminement des efforts

DR3 : Assemblage boulonné avec une double cornières

ANNEXE 2 : Assemblage articulé poutre / solive


ANNEXE 3: Plancher collaborant


JORISIDE

Planchers collaborant

JI 60-160-800 (PML 60 PC Plancher Collab.)

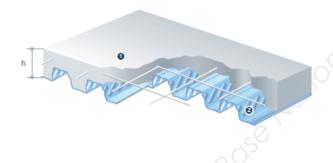
JI 60-160-800 est une tôle d'acier nervurée avec des bossages dans les âmes pour coffrer et armer des planchers en béton. Lorsque JI 60-160-800 est prélaqué, la face laquée est la face SO. La production de JI 60-160-800 est certifiée de qualité QB certificat n° 205-521.

isse (ka/m	²)	

Article	Épaisseur (mm)	Masse (kg/m²)
22	0,75	9,20
22	0,88	10,89
22	1,00	12,27
22	1,20	14,40

Caractéristiques techniques*

Longueur standard à partir de 1500 mm et jusqu'à 13600 mm en standard, colis cerclés par des cadres en bois


Emballage tôle d'acier S 320 GD

Revêtements galvanisation Z 275 ou prélaquage polyester

Normes de référence

NF EN 10346 tolérances décalées Acier galvanisé Prélaquage Côtes / Tolérances Emploi NF EN 10169 appliqué sur galvanisation règles communes DTA 3/15-835 DTA 3/15-835

Détail

Portées admissibles au coulage (en mètres)

Calculation selon le CPT du CSTB, Cahier 3730_V2 - octobre 2014 et DTA 3/15-835

Épaisseur	T = 0,75 mm		Etais	T	= 0,88 m	m	Étais	T	= 1,00 m	m	Étais	T = 1,20 mm			Étais	
plancher	Limites sans étais			Etais	Limites sans étais			Etais	Limites sans étais			Etais	Limites sans étais		tais	Etais
mm	Simple	Double	Multi		Simple	Double	Multi		Simple	Double	Multi		Simple	Double	Multi	
110	2,79	3,19	3,21		2,97	3,56	3,58		3,09	3,86	3,76		3,25	4,36	3,95	
120	2,71	3,10	3,11		2,88	3,46	3,48		2,99	3,75	3,64		3,14	4,23	3,83	
130	2,64	3,01	3,03		2,79	3,36	3,39	06	2,90	3,65	3,54	*	3,05	4,11	3,73	*
140	2,57	2,93	2,95		2,72	3,28	3,30		2,82	3,56	3,45		2,97	4,00	3,63	
150	2,51	2,83	2,87		2,65	3,20	3,22		2,75	3,47	3,37		2,90	3,91	3,55	
160	2,45	2,73	2,80		2,59	3,12	3,15		2,69	3,40	3,29		2,83	3,82	3,47	
170	2,40	2,65	2,72		2,53	3,06	3,08		2,63	3,32	3,23		2,77	3,74	3,40	
180	2,34	2,57	2,64		2,48	2,99	3,02		2,58	3,25	3,16		2,72	3,66	3,33	
190	2,30	2,50	2,58		2,43	2,93	2,95		2,53	3,19	3,10		2,66	3,60	3,27	
200	2,25	2,43	2,51		2,38	2,88	2,88		2,48	3,13	3,05		2,62	3,53	3,22	

Les hypothèses:

- flèche admissible en coulage = 1/180
- largeur de support définitif = 100 mm
 largeur d'appui d'extrémité = 50 mm
- béton classe NC25/30
- classe d'exposition (corrosion) = X0
- classe structurelle = S1

Charges admissibles en service

Epaisseur plancher	Poids de la dalle		Tableau de charges (en kN/m²) selon les portées (en m) T = 0,75 mm										
parue	la ualle	béton			Simple (L)					Simple (T))		maximal
mm	kN/m²	I/m²	1,80	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	min
110	2,09	80	10,46	8,16	6,44	5,11	4,06	3,41	2,75	2,22	1,77	1,39	60
120	2,34	90	11,76	9,19	7,25	5,76	4,58	3,84	3,11	2,50	2,00	1,57	60
130	2,59	100	13,09	10,22	8,07	6,41	5,10	4,28	3,46	2,79	2,23	1,76	90
140	2,84	110	14,41	11,24	8,88	7,06	5,82	4,71	3,82	3,08	2,46	1,95	90
150	3,09	120	15,74	12,26	9,70	7,71	6,36	5,15	4,17	3,36	2,69	2,13	120
160	3,34	130	17,04	13,31	10,51	8,36	6,90	5,59	4,53	3,65	2,92	2,31	120
170	3,59	140	18,36	14,33	11,34	9,02	7,44	6,02	4,88	3,94	3,16	2,50	120
180	3,84	150	19,70	15,36	12,16	9,87	7,97	6,46	5,24	4,23	3,39	2,68	120
190	4,09	160	21,00	16,40	12,96	10,52	8,50	6,89	5,59	4,51	3,62	2,87	180
200	4,34	170	22,31	17,42	13,79	11,20	9,05	7,33	5,94	4,80	3,85	3,07	180
									simple (L) sans fils o	l'étais - simp	ole (T) avec 1	l fils d'étais

										(2) 30113 1113			
Épaisseur plancher	Poids de la dalle	Litrage nom. de	Tableau de charges (en kN/m²) selon les portées (en m) T = 0,75 mm										
parue		béton			Double (L))			Double (T)				
mm	kN/m²	I/m²	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	min
110	2,09	80	11,70	9,48	7,78	6,46	5,40	4,53	3,91	3,33	2,81	2,42	60
120	2,34	90	13,16	10,67	8,76	7,28	6,08	5,10	4,40	3,75	3,20	2,73	60
130	2,59	100	14,64	11,87	9,74	8,09	6,76	5,69	4,90	4,17	3,56	3,04	90
140	2,84	110	16,10	13,06	10,72	8,91	7,44	6,36	5,40	4,60	3,92	3,35	90
150	3,09	120	17,57	14,25	11,70	9,72	8,12	6,94	5,89	5,02	4,29	3,66	120
160	3,34	130	19,05	15,43	12,70	10,53	8,90	7,52	6,39	5,44	4,65	3,97	120
170	3,59	140	20,49	16,64	13,66	11,35	9,59	8,10	6,88	5,87	5,01	4,28	120
180	3,84	150	21,96	17,83	14,64	12,24	10,28	8,69	7,38	6,29	5,37	4,59	120
190	4,09	160	23,44	19,03	15,63	13,07	10,97	9,27	7,87	6,71	5,74	4,91	180
200	4,34	170	24,90	20,22	16,61	13,89	11,66	9,85	8,37	7,14	6,10	5,23	180

double (L) sans fils d'étais - double (T) avec 1 fils d'étais par travée armatures en chapeaux sont présent, contactez l'assistance technique pour le dimension

Les hypothèses:

- flèche admissible en service = L/350
- treillis soudé général de 0,8 cm²/m (en 2 directions)
- sans armature en nappe inférieure
- sans charges permanentes
- facteur de charge variable pour vibration = 0,5
- fréquence propre minimum = 3 Hz

EXAMEN: BTS Constructions Métalliques - Épreuve: U51 Conception - page 9/9